
reviewed 9/29/17

9/28/2017

Worklist: 1915

LAB CASE	ITEM	TASK ID	DESCRIPTION
C2017-1759	1	96035	AM 27 Blood THC Quant by LC
C2017-1761	1	96036	AM 27 Blood THC Quant by LC
C2017-1774	1	96037	AM 27 Blood THC Quant by LC
C2017-1832	1	96352	AM 27 Blood THC Quant by LC
C2017-1919	1	96042	AM 27 Blood THC Quant by LC
M2017-2498	2	96043	AM 27 Blood THC Quant by LC
M2017-3654	1	96038	AM 27 Blood THC Quant by LC
M2017-3719	1	96039	AM 27 Blood THC Quant by LC
M2017-3773	1	96044	AM 27 Blood THC Quant by LC
M2017-3900	2	96040	AM 27 Blood THC Quant by LC
M2017-3999	1	96041	AM 27 Blood THC Quant by LC

A

1

Quantitation of THC and Metabolites in Blood by LC-MS/MS

Extraction Date: 9-26-17

Analyst: Anne Nord

Plate lot#: 0499102

Plate Expiration: 1/29/2018

Mobile phase A:0.1% Formic Acid in LCMS Water
LCMS MethanolMobile phase B:0.1% Formic acid in Acetonitrile
HexaneBlank Blood Lot:321632-1
Column:Column:UCT Selectra DA 100 x 2.1mm 3umLCMS-QQQ ID:6234062340

Pre-Analytic:

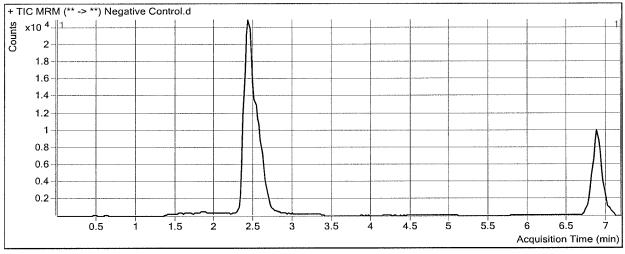
- \square 1. Check levels of mobile phases and needle wash refill as needed. Ensure waste is not full.
- $extstyle{2}$ 2. Ensure correct column is installed and begin mobile phase flow allow to equilibrate ~ 30 minutes.
- ☑ 3. Create worklist:

Analytic:

- 1. Remove standards, plate, controls, and samples from cold storage. Allow to reach room temperature.
- ☑ 2. Pipette 1000µL blood (calibrated pipette) Pipette ID: 2609543 in wells of analytical (standards) plate.
- ☑ 3. Place on shaking incubator at ambient temp., 900rpm for 15 minutes. Shaker ID: 66759
- \square 4. Pipette 500µL 0.1% formic acid in water in wells of analytical plate.
- \square 5. Place on shaking incubator at ambient temp., 900rpm for 15 minutes.
- ☑ 6. Transfer 800µL of blood+acid mixture to corresponding wells of SLE+ plate.
- 7. Apply positive pressure for approx. 10-15 seconds (or until no liquid remains on top of sorbent).
 (Load at 85-100 PSI- Selector to the right) Manifold ID: 66729
- \blacksquare 8. Wait 5 minutes.
- 9. Add 2.25mL MTBE. (Add in 3 increments of 750uL)
- ☑ 10. Wait 5 minutes.
- I1. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- 12. Add 2.25mL Hexane. (Add in 3 increments of 750uL)
- ▲ 13. Wait 5 minutes.
- 14. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- ☐ 15. Remove plate containing eluate. Place on SPE Dry and evaporate to dryness at approx. 35°C. SPE Dry ID: 66819
- 16. Reconstitute in 100µL 100% MeOH and heat seal plate with foil. Place in autosampler and run worklist.

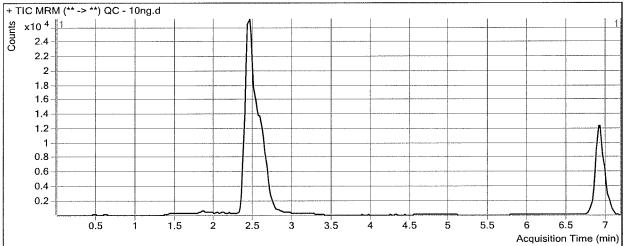
Post-Analytic

 \square 1. Create batch and process data.

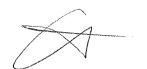

Worklist path: <u>92617 cann quant</u> Batch Name: <u>92617 cunn quant</u>

- \square 2. Make any necessary integration changes, r² values ≥ 0.98 for each analyte.
- \square 3. Did all QCs pass for each analyte? Y / N Enter QCs into control charting?
- 2 4. Central File Packet to include: LIMS Worklist, Method Checklist, Calibration and Control Reports

COMMENTS: Click here to enter text.

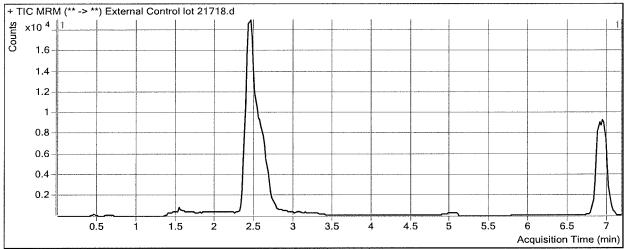

Batch Data Path	D:\2017 Data\92617 car	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 13:07	Data File	Negative Control.d
Sample Type	Sample	Sample Name	Negative Control
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-A2	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

Sample Chromatogram



Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	Ilts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 13:19	Data File	QC - 10ng.d
Sample Type	QC	Sample Name	QC - 10ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-H1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

Sample Chromatogram



Compound THC-OH	ISTD Compound THC-OH-d3	RT 2.456	Response 19274	ISTD Resp 203142	Resp Ratio 0.0949	Final Conc 8.9572
THC-COOH	THC-COOH-d9	2.626	14384	74586	0.1929	8.4252
THC	THC-d3	6.913	10541	84505	0.1247	9,5295

Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 13:31	Data File	External Control lot 21718.d
Sample Type	Sample	Sample Name	External Control lot 21718
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-B2	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

Sample Chromatogram

Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.456	14836	133669	0.1110	10.5661
THC-COOH	THC-COOH-d9	2.626	11620	44397	0.2617	11.7636
THC	THC-d3	6.933	11396	71999	0.1583	12.2422

ISP Forensics Calibration Curve Report

Batch Data Path D:\2017 Data\92617 cann quant\QuantResults\92617 cann quant.batch.bin

Last Calib Update

9/28/2017 9:52 AM

Analyst Name

ISP TOX

Target Compound THC-OH Internal Standard ТНС-ОН-d3 THC-OH - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 1 QCs 2.6 y=0.010016 * x + 0.0051672.4 $R^2 = 0.99930145$ 7 Type:Linear, Origin:Ignore, Weight:1/x Relative Responses 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 20 60 80 100 120 140 160 180 200 220 240 260 Ò 40 Concentration (ng/ml)

Sample	Level	Enabled	Exp Conc	Final Conc	Accuracy
Cal 1 - 3ng	1	\square	3	3.0	100.6
Cal 2 - 5ng	2	\mathbf{N}	5	4.9	98.8
Cal 3 - 10ng	3	$\mathbf{\nabla}$	10	9.3	93.1
QC - 10ng	3	$\mathbf{\nabla}$	10	9.0	89.6
Cal 4 - 25ng	4	M	25	26.2	104.7
Cal 5 - 50ng	5	$\mathbf{\nabla}$	50	50.9	101.7
Cal 6 - 100ng	6	\square	100	102.8	102.8
Cal 7 - 250ng	7	$\mathbf{\Sigma}$	250	245.9	98.4

ISP Forensics **Calibration Curve Report**

Batch Data Path D:\2017 Data\92617 cann quant\QuantResults\92617 cann quant.batch.bin

Last Calib Update

9/28/2017 9:52 AM

ТНС-СООН

Analyst Name

ISP TOX

Target Compound Internal Standard ТНС-СООН-d9 THC-COOH - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 1 QCs 5.5 y = 0.020632 * x + 0.019027 R^2 = 0.99417004 Type:Lihear, Origin:Ignore, Weight:1/x^2 Relative Responses 4.5 4 3.5 3. 2.5 2 1.5 1 0.5 0 240 ò 20 40 60 80 100 120 140 160 180 200 220 260 Concentration (ng/ml)

Sample	Level	Enabled	Exp Conc	Final Conc	Accuracy
Cal 1 - 3ng	1	\square	3	3.2	107.2
Cal 2 - 5ng	2	\mathbf{N}	5	4.5	90.7
Cal 3 - 10ng	3	\mathbf{M}	10	9.3	92.7
QC - 10ng	3	\mathbf{M}	10	8.4	84.3
Cal 4 - 25ng	4	\mathbf{N}	25	25.4	101.5
Cal 5 - 50ng	5	\mathbf{N}	50	51.4	102.9
Cal 6 - 100ng	6	\square	100	105.4	105.4
Cal 7 - 250ng	7	Ø	250	249.0	99.6

ISP Forensics Calibration Curve Report

Batch Data Path D:\2017 Data\92617 cann quant\QuantResults\92617 cann quant.batch.bin

Last Calib Update

9/28/2017 9:52 AM

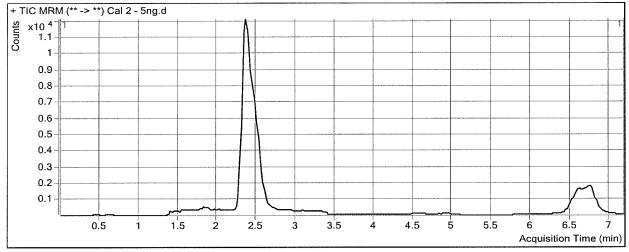
Analyst Name

ISP TOX

Target Compound THC THC-d3 Internal Standard THC - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 1 QCs 3.25 | y = 0.012366 * x + 0.006890 3 | R^2 = 0.99807209 Relative Responses Type:Linear, Origin:Ignore, Weight:1/x 2.75-2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 -0.25 20 40 60 80 100 120 140 160 180 200 220 240 260 Ó Concentration (ng/ml)

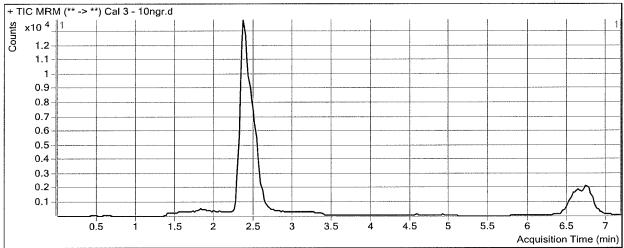
Sample	Level	Enabled	Exp Conc	Final Conc	Accuracy
Cal 1 - 3ng	1	Ø	3	2.5	82.0
Cal 2 - 5ng	2	\square	5	5.5	110.4
Cal 3 - 10ng	3	\square	10	9.9	98.8
QC - 10ng	3	\square	10	9.5	95.3
Cal 4 - 25ng	4	\square	25	25.5	102.0
Cal 5 - 50ng	5	\square	50	52.6	105.3
Cal 6 - 100ng	6		100	104.4	104.4
Cal 7 - 250ng	7	\square	250	242.6	97.0

Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	llts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 11:32	Data File	Cal 1 - 3ng.d
Sample Type	Calibration	Sample Name	Cal 1 - 3ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-A1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation


Sample Chromatogram

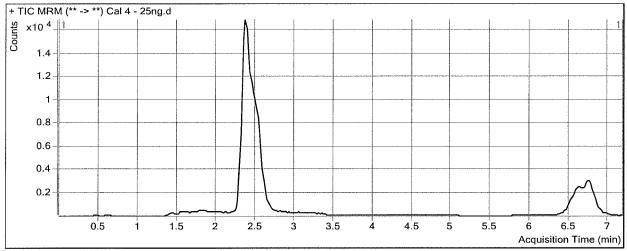
Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.396	3452	97526	0.0354	3.0186
THC-COOH	THC-COOH-d9	2,506	3281	38417	0.0854	3.2171
THC	THC-d3	6.733	1097	29405	0.0373	2.4602

Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 11:44	Data File	Cal 2 - 5ng.d
Sample Type	Calibration	Sample Name	Cal 2 - 5ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-B1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation


Sample Chromatogram

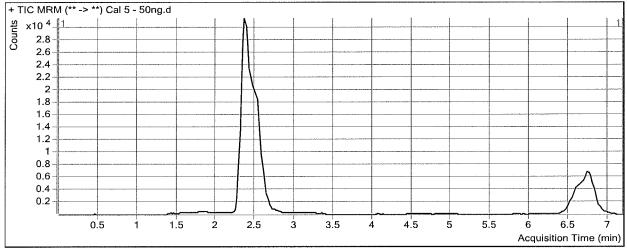
Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.396	4795	87786	0.0546	4.9383
THC-COOH	THC-COOH-d9	2.526	3855	34222	0.1126	4.5372
THC	THC-d3	6.753	2212	29420	0.0752	5.5220

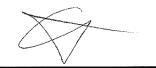
Batch Data Path	D:\2017 Data\92617 ca	ann quant\QuantResu	llts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 11:56	Data File	Cal 3 - 10ngr.d
Sample Type	Calibration	Sample Name	Cal 3 - 10ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-C1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation


Sample Chromatogram

Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.376	9133	92839	0.0984	9.3059
THC-COOH	THC-COOH-d9	2.526	7283	34633	0.2103	9.2698
THC	THC-d3	6.733	3972	30761	0.1291	9.8837

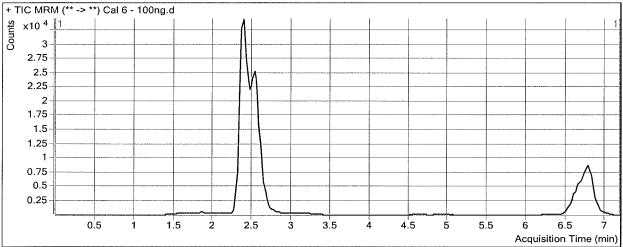
Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 12:08	Data File	Cal 4 - 25ng.d
Sample Type	Calibration	Sample Name	Cal 4 - 25ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-D1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation


Sample Chromatogram


Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2,396	27189	101704	0.2673	26.1764
THC-COOH	THC-COOH-d9	2.526	20829	38394	0.5425	25.3729
THC	THC-d3	6.753	11449	35546	0.3221	25.4889

Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 12:20	Data File	Cal 5 - 50ng.d
Sample Type	Calibration	Sample Name	Cal 5 - 50ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-E1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

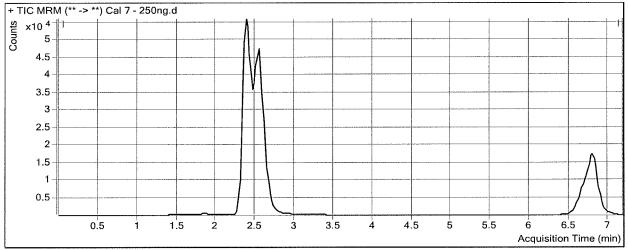
Sample Chromatogram



Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.376	83367	162029	0.5145	50.8564
THC-COOH	THC-COOH-d9	2.526	61669	57083	1.0803	51,4396
THC	THC-d3	6.733	37876	57565	0.6580	52.6492

Batch Data Path	D:\2017 Data\92617 ca	inn quant\QuantResu	ılts∖92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 12:32	Data File	Cal 6 - 100ng.d
Sample Type	Calibration	Sample Name	Cal 6 - 100ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-F1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

Sample Chromatogram



Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.396	131632	127256	1.0344	102.7623
THC-COOH	THC-COOH-d9	2.546	100049	45626	2.1928	105.3596
THC	THC-d3	6.773	59294	45666	1.2984	104.4413

Batch Data Path	D:\2017 Data\92617 ca	nn quant\QuantResu	ılts\92617 cann quant.batch.bin
Analysis Time	9/28/2017 9:52 AM	Analyst Name	ISP Tox
Report Time	9/28/2017 9:54 AM	Reporter Name	ISP Tox
Last Calib Update	9/28/2017 9:52 AM	Batch State	Processed
Analysis Info			
Acq Time	2017-09-27 12:43	Data File	Cal 7 - 250ng.d
Sample Type	Calibration	Sample Name	Cal 7 - 250ng
Dilution	1	Acq Method	AM 27 Quant THC 7-2017.m
Position	P1-G1	Sample Info	
Inj Vol	-1	Comment	AM 27 Cannabinoid Confirmation

Sample Chromatogram

Compound	ISTD Compound	RT	Response	ISTD Resp	Resp Ratio	Final Conc
THC-OH	THC-OH-d3	2.396	298248	120826	2.4684	245.9422
THC-COOH	THC-COOH-d9	2.546	219345	42543	5.1559	248,9758
THC	THC-d3	6.793	134655	44790	3.0064	242.5547

Quantitation of THC and Metabolites in Blood by LC-MS/MS

Extraction Date: <u>9-13-17</u> Analyst: <u>Anne</u> Nore

Plate lot#: 0499102

Plate Expiration: 1/29/2018

Mobile phase A: 0.1% Formic Acid in LCMS Water Mobile phase B: 0.1% Formic acid in Acetonitrile MTBE LCMS Methanol Hexane Blank Blood Lot: 321632-1 Column: UCT Selectra DA 100 x 2.1mm 3um LCMS-QQQ ID: 62340

Pre-Analytic:

- \square 1. Check levels of mobile phases and needle wash refill as needed. Ensure waste is not full.
- \square 2. Ensure correct column is installed and begin mobile phase flow allow to equilibrate ~ 30 minutes.
- \square 3. Create worklist:

Analytic:

- 1. Remove standards, plate, controls, and samples from cold storage. Allow to reach room temperature.
- 2. Pipette 1000µL blood (calibrated pipette) Pipette ID: 2609543 in wells of analytical (standards) plate.
- ☑ 3. Place on shaking incubator at ambient temp., 900rpm for 15 minutes. Shaker ID: 66759
- ☑ 4. Pipette 500µL 0.1% formic acid in water in wells of analytical plate.
- ☑ 5. Place on shaking incubator at ambient temp., 900rpm for 15 minutes.
- □ 6. Transfer 800µL of blood+acid mixture to corresponding wells of SLE+ plate.
- ☑ 7. Apply positive pressure for approx. 10-15 seconds (or until no liquid remains on top of sorbent). (Load at 85-100 PSI- Selector to the right) Manifold ID: 66729
- \square 8. Wait 5 minutes.
- 9. Add 2.25mL MTBE. (Add in 3 increments of 750uL)
- \square 10. Wait 5 minutes.
- ☑ 11. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- ☑ 12. Add 2.25mL Hexane. (Add in 3 increments of 750uL)
- \square 13. Wait 5 minutes.
- □ 14. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- ☑ 15. Remove plate containing eluate. Place on SPE Dry and evaporate to dryness at approx. 35°C. SPE Drv ID: 66819
- 也 16. Reconstitute in 100µL 100% MeOH and heat seal plate with foil. Place in autosampler and run worklist.

Post-Analytic

- \boxdot 1. Create batch and process data.
- □ 1. Create batch and process data. $Worklist path: <u><math>\frac{9/3}{1}$ (and duant</u> Batch Name: <u>(91317) (and duant</u> □ 2. Make any necessary integration changes, r^2 values ≥0.98 for each analyte. fail□ 3. Did all QCs pass for each analyte? Y N Enter QCs into control charting?

- 4. Central File Packet to include: LIMS Worklist, Method Checklist, Calibration and Control Reports

COMMENTS: Click here to enter text.

This run Failed. Samples were re-extracted and run with the next batch. c2017-1759-1 m2017-3654-1 m2017-3099-1 c2017-1761-1 m2017-3719-1 c2017-1761-1 m2017-3719-1 MJ017-39007

		San	Sample				THC-CO		THC	000	THC-COOH Results	ults		Qualifier (345	Quali	Qualifier (345.2	Ą	299.1)	THC-C(THC-COOH-d
$\mathbf{\Theta}$		Name	Type	e E	Acq. Date-Time	Pos.	Exp. Conc.	RT	Resp.	S/N	Ē	Calc. Conc.	Accur acy	Transition	Ratio	Σ	Area	S/N	цТ	Resp.
		Y Cal 1 - 3ng	Cal	-	9/15/2017 6:42	P1-A1	3.0000	2.406	16981	51	L.	3.0290	101.0	345.2 -> 299	15.0		2545	12.53	2.382	76198
ļ		🌾 🛛 Cal 2 - 5ng	Cal	5	9/15/2017 6:54	P1-B1	5.0000	2.406	16543	20.	<u> </u>	4.9357	98.7	345.2 -> 299	20.9		3460	14.05	2.362	61154
	0	Cal 3 - 10ng	Cal	ε	9/16/2017 9:08	P1-C1	10.0000				1			345.2 -> 299		Ľ.				
1.8	,	🌾 🛛 Cal 4 - 25ng	Cal	4	9/16/2017 9:20	P1-D1	25.0000	2.426	31855	139	<u>L</u> ;	14.30	57.2	345.2 -> 299	35.4	L	11286	38.40	2.382	63122
		👻 Cal 5 - 50ng	Cal	2	9/16/2017 9:31	P1-E1	50.0000	2.426	1542	Infi	<u>l</u>	101.6	203.3	345.2 -> 299	46.8		72204	699.46	2.382	57387
		🍸 Cal 6 - 100ng	Cal	9	9/16/2017 9:43	P1-F1	100.0000	2.426	1179	285.	<u>l</u>	70.12.	70.1	345.2 -> 299	43.8	L	51610	49.37	2.382	62087
		😵 Cal 7 - 250ng	Cal	7	9/16/2017 9:55	P1-G1	250.0000	2.426	2835	Infi	L;	174.2	69.7	345.2 -> 299	47.9	L	1357	Infinity	2.382	62987
	0	Negative Control	Sam		9/16/2017 10:1	P1-A2					L			345.2 -> 299		<u> </u>				
		🌾 🛛 QC - 10ng	ဗ	ю	9/16/2017 10:3	P1-H1	10.0000	2.466	24413	36.	L;	13.58	135.9	345.2 -> 299	36.5	<u> </u>	8913	52.28	2.402	50160
		External Control lot 217	Sam		9/16/2017 10:4	P1-B2		2.426	28569	50	L	4.4688		345.2 -> 299	30.0		8559	43.60	2.402	1103
	0	blank c2017-1759-1	Sam		9/16/2017 10:5	Vial 2					L			345.2 -> 299		L			2.382	27467
	0	V C2017-1759-1	Sam		9/16/2017 11:0	P1-C2		2.426	45699	84	1;	15.75		345.2 -> 299	57.9		26481	307.09	2.382	84501
	0	blank c2017-1761-1	Sam		9/16/2017 11:1	Vial 2					L			345.2 -> 299					2.402	27480
		V c2017-1761-1	Sam		9/16/2017 11:3	P1-D2		2.426	1240	434.	<u> </u>	59.91		345.2 -> 299	52.5	l	65085	157.66	2.382	75414
	0	blank c2017-1774-1	Sam		9/16/2017 11:4	Vial 2					L			345.2 -> 299		L			2.442	28364
- 45		c2017-1774-1	Sam		9/16/2017 11:5	P1-E2		2.486	1636	156	L	54.55		345.2 -> 299	43.7	L	71477	30.96	2.442	1083
	0	blank m2017-3654-1	Sam		9/16/2017 12:0	Vial 2					L			345.2 -> 299					2.422	27699
	0	m2017-3654-1	Sam		9/16/2017 12:1	P1-F2		2.486	23637	52.	L.,	7.7865		345.2 -> 299	38.5	1	9102	67.60	2.442	69164
	0	blank m2017-3719-1	Sam		9/16/2017 12:2	Vial 2					L			345.2 -> 299					2.422	27079
	0	👻 m2017-3719-1	Sam		9/16/2017 12:4	P1-G2		2.486	73031	306	L	33.77		345.2 -> 299	37.4		27314	154.93	2.422	73671
	0	blank m2017-3900-2	Sam		9/16/2017 12:5	Vial 2					L			345.2 -> 299		L			2.442	27249
-3		m2017-3900-2	Sam		9/16/2017 1:05	P1-H2		2.486	1244	Infi	L_ :	58.77		345.2 -> 299	44.4	L	55242	188.11	2.442	77030
	0	blank m2017-3999-1	Sam		9/16/2017 1:17	Vial 2					<u>l</u>			345.2 -> 299					2.422	27179
- 61	Ċ	m2017_3000_1	and S		Q/16/2017 1-28	P1-A3					L			345.2 -> 299		1				

Sample			THC.		n Seesa see 11 the see	THC-OH Results	H Res	sults	- - - 	Qualifier (331 Qualifier (331.2	. Qualifi	er (331.2	-> 193.0)		THC-OH-d3 (I.
el « e r	Acq. Date-Time	Bos	Exp.	R	Resp.	S(N	Ē	Calc. Conc. Accuracy	Accuracy	Transition	Ratio	MIArea	N/S W	T T T	Kesp.
1 9/1	9/15/2017 6:42 P	P P1-A1	A1 3.00	2.295	6582	7.91	L	1.6397	54.7	331.2 -> 193				2.292	32 2221
2 9/15	9/15/2017 6:54 P	P P1-B1	31 5.00	. 2.315	10173	18.40		4.1359	82.7	331.2 -> 193	12.4	[1259		20.28 2.292	92 1867.
3 9/16	3 9/16/2017 9:08 A	A P1-C1	C1 10.0]			331.2 -> 193		 L			
4 9/16	9/16/2017 9:20 A	A P1-D1	01 25.0	. 2.315	33450	109.57	L	16.6161	66.5	331.2 -> 193	13.1	5 4378		36.15 2.292	92 1871
5 9/16	5 9/16/2017 9:31 A	A P1-E1		. 2.315	1962	Infinity		113.6681	227.3	331.2 -> 193	12.4	[24395	95 287.88	88 2.312	12 1713.
6 9/16/	6 9/16/2017 9:43 A	A P1-F1	-1 100	. 2.315	1631	501.99	L	83.4133	83.4	331.2 -> 193.	12.5	[20353	53 235.49	49 2.292	32 1932.
7 9/16/:	7 9/16/2017 9:55 A	A P1-G1	31 250	. 2.315	4172	Infinity		213.5268	85.4	331.2 -> 193	12.2	50752	52 335.27	27 2.292	92 1950.
9/16/	9/16/2017 10:19		5				L.,			331.2 -> 193.					
3 9/16/2	9/16/2017 10:31	P1-H1	11 10.0	. 2.336	25385	40.85		16.1562	161.6	331.2 -> 193	13.0	[] 3302		53.80 2.332	32 1457
9/16/2	9/16/2017 10:43	3 P1-B2	32	2.315	22288	28.07	Ì	5.7621		331.2 -> 193	13.3	Г 2964		23.13 2.312	12 3153.
9/16/2	9/16/2017 10:54	I Vial 2	2 2000							331.2 -> 193				2.292	92 1397.
9/16/2(9/16/2017 11:06	5 P1-C2	22				L			331.2 -> 193			SS 22.025	2.292	92 2377
9/16/2	9/16/2017 11:18	8 Vial 2	2							331.2 -> 193.				2.292	92 1410.
9/16/2	9/16/2017 11:30) P1-D2	D2	2.315	30294	143.34	L	10.9961		331.2 -> 193	12.4	T 3752		13.89 2.292	92 2467
9/16/20	9/16/2017 11:42	Vial 2	2							331.2 -> 193.				2.352	52 1355.
9/16/2	9/16/2017 11:54	L. P1-E2	E2	2.356	16362	17.91		3.8619		331.2 -> 193	12.9	2104	04 15.	58 2.352	52 3161
9/16/2	9/16/2017 12:06) Vial 2	2				<u> </u>			331.2 -> 193_				2.352	52 1442.
9/16/	9/16/2017 12:17	/ P1-F2	-2	2.356	1466	3.78	<u> </u>	0.0000		331.2 -> 193				2.352	52 2058.
9/16/2	9/16/2017 12:29) Vial 2	2				 L			331.2 -> 193				2.352	52 1373.
9/16/	9/16/2017 12:41	I P1-G2	32	2.356	3177	7.09		0.0973		331.2 -> 193.				2.332	32 2227
9/16	9/16/2017 12:53	3 Vial 2	2							331.2 -> 193				2.352	52 1368.
9/16	9/16/2017 1:05 P	P P1-H2	12	2.336	11940	95.93	L	3.8448		331.2 -> 193	13.2	15	1573 13.	13.60 2.352	52 2314.
9/16	9/16/2017 1:17 P	P Vial 2	2				L			331.2 -> 193				2.352	52 1398.
9/16	9/16/2017 1-28 P P1-43	Р Р1-	<u> </u>				L			331.2 -> 193		L			

(IST	Resp.	85142	71164		82656	71221	83476	81957		60944	1429	72497	96423	70839	58204	69694	87764	69595	64390	69306	63209	68660	40465	67994	
THC-d3 (IST	RT	6.306	6.266		6.346	6.346	6.346	6.346		6.426	6.346	6.226	6.326	6.206	6.226	6.406	6.406	6.406	6.426	6.406	6.426	6.426	6.406	6.406	
12	S/N	4	3	in the second		2	2	h			Ļ.				3		Ļ.				2		Ļ		
Qualifier (315.2 -> 12	Area	982	1609		5490	34843	29806	73171		4373	4122				5014		5043				680		1502		
ier (3	Ī	L	1	L	L	L	L	L	L	L	L	1	L	L	L	L	L	L	L	L	L	L	L	L	L
Qualit	Ratio MI	30.2	31.6		28.5	33.8	34.1	33.5		31.4	29.2				36.4		32.4				34.0		26.9		
Qualifier (315	Transition	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123	315.2 -> 123
	Accuracy	50.2	83.7		68.6	229.8	82.7	85.0		167.8															
ts concernan	Calc. Conc. Accuracy	1.5046	4.1841		17.1594	114.9119	82.6775	212.5625		16.7848	6.3900		0.0000		17.4746		12.7043		0.0000		0.9788		9.5329		
Resul	Ē	L	L.	L	L	L	L	Ì.	L	L	L	L	L	L	L	L	L	L		L	L	L	L	L	 L
THC Results	S/N	11.73	30.89		152.56	343.49	Infinity	Infinity		60.79	39.89		7.94		21.89		96.82		5.67		9.69		15.91		
er of to the	Resp.	3248	5087		19250	1031	87478	2183		13909	14140		1167		13783		15575		1178		1998		5585		
gliptare e	R	6.312	6.312	****	6.353	6.373	6.353	6.353	17-00	6.433	6.353		6.373		6.272		6.473		6.453		6.433		6.553		
THC	Conc. Providence Provi	3.0	5.0	10	25	50	100	250		10															
	So	P1-A1	P1-B1	P1-C1	P1-D1	P1-E1	P1-F1	P1-G1	P1-A2	P1-H1	P1-B2	Vial 2	P1-C2	Vial 2	P1-D2	Vial 2	P1-E2	Vial 2	P1-F2	Vial 2	P1-G2	Vial 2	P1-H2	Vial 2	P1-A3
	-Time	6:42		9:08	9:20	9:31		9:55	10:1	10:3	10:4	10:5	11:0	11:1	11:3	11:4	11:5	12:0	12:1		12:4		1:05		1:28
-	Typ Le Acq. Date-Time	9/15/2017 6:42	9/15/2017 6:54	3 9/16/2017 9:08	9/16/2017 9:20	5 9/16/2017 9:31	9/16/2017 9:43	7 9/16/2017 9:55	9/16/2017 10:1	9/16/2017 10:3	9/16/2017 10:4 P1-B2	9/16/2017 10:5 Vial 2	9/16/2017 11:0 P1-C2	9/16/2017 11:1 Vial 2	9/16/2017 11:3 P1-D2	9/16/2017 11:4 Vial 2	9/16/2017 11:5	9/16/2017 12:0	9/16/2017 12:1	9/16/2017 12:2	9/16/2017 12:4	9/16/2017 12:5	9/16/2017 1:05	9/16/2017 1:17	9/16/2017 1:28
	<u> </u>	1	2	3	4		9	7		e															
Sample	e Typ	Cal	Cal	Cal	Cal	Cal	Cal	Cal	Sa	ဗ္ဂ	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa	Sa
Sa	Name	Cal 1 - 3ng	Cal 2 - 5ng	Cal 3 - 10ng	Cal 4 - 25ng	Cal 5 - 50ng	Cal 6 - 100ng	Cal 7 - 250ng	Negative Control	QC - 10ng	External Control	blank c2017-17	C2017-1759-1	blank c2017-176	c2017-1761-1	blank c2017-177	c2017-1774-1	blank m2017-36	m2017-3654-1	blank m2017-37	m2017-3719-1	blank m2017-39	m2017-3900-2	blank m2017-39	m2017-3999-1
	4	\$			2	\$				<u>مەر</u>			۵						2		\$		>		
	·	0		0					٩			0	0	0		0		0	0	0	0	0		0	0